现代制造工程 ›› 2024, Vol. 522 ›› Issue (3): 70-78.doi: 10.16731/j.cnki.1671-3133.2024.03.010

• 车辆工程制造技术 • 上一篇    下一篇

基于多模态中间表示的端到端自动驾驶模型*

孔慧芳, 刘润武, 胡杰   

  1. 合肥工业大学电气与自动化工程学院,合肥 230009
  • 收稿日期:2023-05-09 出版日期:2024-03-18 发布日期:2024-05-31
  • 通讯作者: 刘润武,硕士研究生,主要研究方向为自动驾驶。E-mail:liurunwu@yeah.net
  • 作者简介:孔慧芳,博士,教授,博士生导师,主要研究方向为汽车电子和物联网等领域的控制理论和应用研究等。E-mail:konghuifang@hfut.edu.cn
  • 基金资助:
    * 安徽省重点研发计划项目 (202104a05020035)

End-to-end autonomous driving model based on multi-modal intermediate representations

KONG Huifang, LIU Runwu, HU Jie   

  1. School of Electrical Engineering and Automation,Hefei University of Technology,Hefei 230009,China
  • Received:2023-05-09 Online:2024-03-18 Published:2024-05-31

摘要: 对驾驶环境的准确理解是实现自动驾驶的先决条件之一。为提高自动驾驶车辆的场景理解能力,提出了一种基于语义分割、水平视差和角度编码的多模态中间表示的端到端自动驾驶模型。该端到端自动驾驶模型利用深度学习技术构建感知-规划网络。感知网络以RGB和深度图为输入生成多模态中间表示,实现道路环境及周围障碍物的空间分布描述;规划网络使用多模态中间表示进行道路环境特征提取和航路点预测。基于CARLA仿真平台进行模型的训练和性能测试,结果表明:该端到端自动驾驶模型能够实现对城市道路环境的场景理解,有效地减少了碰撞;相较于单模态中间表示的基线模型,其驾驶性能指标提升了31.47 %。

关键词: 自动驾驶, 场景理解, 模仿学习, 轨迹规划

Abstract: An accurate understanding of the driving environment is one of the prerequisites for autonomous driving.In order to improve the scene understanding ability of autonomous driving vehicles,an end-to-end autonomous driving model based on semantic segmentation,horizontal disparity,and angle coding multi-modal intermediate representations was proposed.The end-to-end autonomous driving model used deep learning technology to build perception-planning network.The perception network generated multi-modal intermediate representations with RGB and depth images as inputs to realize the spatial distribution description of road environment and surrounding obstacles.The planning network used multi-modal intermediate representations to extract road environment features and predict waypoints. Model training and performance testing were conducte based on the CARLA simulation platform.The results showed that the end-to-end autonomous driving model can realize the scene understanding of urban road environment and effectively reduce collisions.Compared with the baseline model based on the single modal intermediate representation,its driving performance index is 31.47 % better than the baseline model.

Key words: autonomous driving, scene understanding, imitation learning, trajectory planning

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: