现代制造工程 ›› 2024, Vol. 529 ›› Issue (10): 82-89.doi: 10.16731/j.cnki.1671-3133.2024.10.011

• 机器人技术 • 上一篇    下一篇

基于膜计算的搬运机器人轨迹规划和模型预测控制*

姚江云1, 王宽田2   

  1. 1 柳州工学院信息科学与工程学院,柳州 545616;
    2 桂林电子科技大学海洋工程学院,北海 536000
  • 收稿日期:2024-07-26 发布日期:2024-10-29
  • 通讯作者: 王宽田,高级实验师,研究方向为先进智能制造技术。E-mail:411879705@qq.com
  • 作者简介:姚江云,硕士研究生,副教授,研究方向为机器人智能化开发。E-mail:469849257@qq.com
  • 基金资助:
    *广西科技基地和人才专项项目(2020AC19115);2020年度广西高校中青年教师科研基础能力提升项目资助项目(2020KY60012)

Trajectory planning of handling robots based on membrane computing and model prediction control

YAO Jiangyun1, WANG Kuantian2   

  1. 1 College of Information Science and Engineering, LiuZhou Institute of Technology, Liuzhou 545616,China;
    2 Ocean Engineering College,Guilin University of Electronic Technology, Beihai 536000,China
  • Received:2024-07-26 Published:2024-10-29

摘要: 针对复杂环境下搬运机器人存在轨迹规划效率低、跟踪控制误差较大及系统不稳定的问题,提出基于膜计算及模型预测的搬运机器人轨迹优化控制方法。首先,针对传统动态窗口算法在速度采样空间中采用均匀等分的方式进行采样,导致轨迹规划效率低的问题,设计了一种基于膜计算粒子群算法改进的搬运机器人动态窗口算法。借助粒子群的随机性和膜计算的分布式并行计算能力对传统动态窗口算法进行优化设计,不断迭代得到最优路径;其次,针对搬运机器人系统模型的非线性特点,采用线性模型预测控制方法完成轨迹跟踪,通过构建预测模型、设定目标函数及设计积分器来完成高精度轨迹跟踪。实验结果表明,在稀疏障碍物和复杂障碍物2种实验场景中,改进后的算法在路径长度、时间及步数上平均减少了15.07 %、6.72 %、7.68 %,且所提的模型预测控制方法在跟踪精度、系统鲁棒性方面都具有一定的优势。

关键词: 搬运机器人, 膜计算, 粒子群算法, 动态窗口算法, 模型预测控制

Abstract: In view of problems such as difficulty in path planning of logistics handling robots in complex environments, a trajectory optimization control method for handling robots based on membrane computing and model prediction control was proposed. Firstly, an improved robot dynamic window algorithm based on membrane computing particle swarm optimization was proposed to address the problems of low efficiency in trajectory planning caused by the traditional dynamic window algorithm using uniform and equal division sampling in the speed sampling space. With the help of the randomness of particle swarm optimization and the distributed parallel computing capability of membrane computing, traditional dynamic window algorithms were optimized and iteratively optimized to obtain the optimal path. Secondly, in response to the nonlinear characteristics of the robot system model, a model predictive control method was designed to complete trajectory tracking, by building prediction models, setting objective functions, and eliminating cumulative errors through integration. The experimental results showed that the improved algorithm reduced the average path length, time, and number of steps by 15.07 %, 6.72 %, and 7.68 % in both sparse and complex obstacle scenarios,the proposed model predictive control method has certain advantages in tracking accuracy and system robustness.

Key words: handling robots, membrane calculation, Particle Swarm Optimization (PSO) algorithm, Dynamic Window Algorithm (DWA), model prediction control

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: