现代制造工程 ›› 2018, Vol. 451 ›› Issue (4): 108-114.doi: 10.16731/j.cnki.1671-3133.2018.04.020

• 制造技术/工艺装备 • 上一篇    下一篇

基于有序聚类的机床热误差测点优化

魏弦   

  1. 攀枝花学院, 攀枝花 617000
  • 收稿日期:2017-02-12 出版日期:2018-04-20 发布日期:2018-07-18
  • 通讯作者: 国家自然科学基金项目(51605381);四川省科技厅科技支撑计划项目(2016GZ0205);四川省教育厅重点项目(16ZA0415);攀枝花学院博士基金项目(BKQJ2017007)
  • 作者简介:魏弦, 副教授, 博士研究生, 从事机床精度控制研究。E-mail:110801844@qq.com

Optimizing of CNC machine tool temperature measuring points based on sequential cluster method

Wei Xian   

  1. Panzhihua University, Panzhihua 617000, Sichuan, China
  • Received:2017-02-12 Online:2018-04-20 Published:2018-07-18

摘要: 温度测点的选择直接影响数控机床热误差补偿模型的性能。考虑到温度有序传递的特点, 提出了有序聚类测点优化的方法。以试验数据为基础, 计算类直径并比较目标误差函数;然后对温度变量分类, 确定最佳分类数;通过计算热误差和温度之间的相关系数, 确定最优测点。采用定位误差分解建模法结合选取的最优测点建立热误差预测模型, 分别与模糊聚类和变量分组测点优化建立的模型进行比较, 试验结果表明, 有序聚类测点优化法精度较高, 具有一定的应用前景。

关键词: 数控机床, 热误差, 测点优化, 有序聚类, 热误差补偿

Abstract: The performance of CNC machine tool thermal error compensation model is affected directly by the selection of temperature sensor placement.An optimizing method of sensor selected by sequential cluster is proposed, given that the characteristic temperature is transferred in order.Based on experiment data, classification diameters are calculated and their objective function are compared.Then the optimizing classification number and optimizing sensor placement are determined by the calculation of correlation coefficient between thermal error and temperature value.Thermal error prediction model is established with a position error modelling method and the selected points.In comparison with models established by fuzzy cluster and variable grouping, the results show the proposed method can accurately predict and has potential application prospect.

Key words: CNC machine tool, thermal error, measuring points optimizing, sequential cluster, thermal error compensation

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: