现代制造工程 ›› 2018, Vol. 453 ›› Issue (6): 101-107.doi: 10.16731/j.cnki.1671-3133.2018.06.019

• 仪器仪表/检测/监控 • 上一篇    下一篇

改进混沌粒子群优化的灰色系统模型在机床热误差建模中的应用

余文利1, 姚鑫骅2   

  1. 1 衢州职业技术学院机电工程学院,衢州 324000;
    2 浙江大学机械工程学院,杭州 310027
  • 收稿日期:2016-04-18 出版日期:2018-06-18 发布日期:2018-07-20
  • 作者简介:余文利,副教授,主要研究方向为数控机床空间误差和热误差的计算机建模和仿真软件开发。E-mail:yujimmy@163.com
  • 基金资助:
    浙江省科技厅公益性应用研究计划资助项目(2014C31089)

Application of improved chaotic particle swarm optimization grey system model to thermal error modeling of machine tools

Yu Wenli1, Yao Xinhua2   

  1. 1 Department of Mechanical Engineering,Quzhou College of Technology,Quzhou 324000,Zhejiang,China;
    2 College of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China
  • Received:2016-04-18 Online:2018-06-18 Published:2018-07-20

摘要: 为减少热误差对数控机床加工精度的影响,提高灰色系统模型(Grey system Model,GM)的预测精度,尝试将改进混沌粒子群优化(Improvemen Chaotic Particle Swarm Optimization,ICPSO )算法引入到灰色系统模型中,提出一种基于改进混沌粒子群优化算法的灰色系统模型数控机床热误差建模方法。首先,建立粒子群优化(Particle Swarm Optimization,PSO)粒子与GM(1,N)系数的映射关系;其次,ICPSO中混沌理论的Logistic映射对粒子群的位置和速度进行初始化,通过优化搜索得到最优GM(1,N)系数和输入子集;最后,建立改进混沌粒子群优化的灰色系统模型(ICPSO-GM),对数控机床热误差进行预测。仿真实验表明,ICPSO-GM预测精度高于GM和人工神经网络(ANN)模型,证明了ICPSO-GM能有效地解决数控机床热误差预测问题。

关键词: 数控机床, 热误差, 混沌, 粒子群优化, 灰色系统模型

Abstract: In order to decrease the influence of thermal errors on machining precision of machine tools and to improve the prediction accuracy of Grey system Model(GM),the Improved Chaotic Particle Swarm Optimization (ICPSO) is introduced into the grey system model.One improved chaotic particle swarm optimization based grey system model is proposed to model the thermal errors of the machine tools.Firstly,the mapping of between particles of PSO and the parameters of grey system model is developed.Next,the Logistic map of chaotic theory of ICPSO initializes the location and velocity of particles.The optimal parameters and input set are obtained by optimizing search with ICPSO.Then,the model based on ICPSO-GM is established to predict the thermal errors of machine tools.The simulation shows that the thermal model of ICPSO-GM has the higher prediction precision than GM and Artificial Neural Network(ANN).The results indicate that the proposed ICPSO-GM can effectively realize the prediction of thermal errors of machine tools.

Key words: computer numercial control machines, thermal errors, chaos, Particle Swarm Optimization(PSO), Grey system Model(GM)

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: