现代制造工程 ›› 2024, Vol. 531 ›› Issue (12): 94-101.doi: 10.16731/j.cnki.1671-3133.2024.12.012

• 车辆工程制造技术 • 上一篇    下一篇

结合属性邻接图与点云的零件模型特征识别方法

舒敏, 杨涛   

  1. 1 西南科技大学信息工程学院,绵阳 621010;
    2 特殊环境机器人技术四川重点实验室,绵阳 621010
  • 收稿日期:2024-03-25 出版日期:2024-12-18 发布日期:2024-12-24
  • 通讯作者: 杨涛,博士,教授,主要研究方向为机电系统建模、仿真与控制。E-mail:872804421@qq.com
  • 作者简介:舒敏,硕士研究生,主要研究方向为工业自动化。

A part model feature recognition method combining attribute adjacency graph and point cloud

SHU Min, YANG Tao   

  1. 1 School of Information Engineering,Southwest University of Science and Technology, Mianyang 621010,China;
    2 Key Laboratory of Sichuan Province for Robot Technology Used for Special Environment, Mianyang 621010,China
  • Received:2024-03-25 Online:2024-12-18 Published:2024-12-24

摘要: 针对目前基于属性邻接图与点云的零件模型特征识别技术存在的局限性,结合2种特征识别方法提出了一种结合属性邻接图与点云的零件模型特征识别方法。利用模型属性邻接图匹配特征子图找到特征面并分离,再将特征面进行点云采样,最后在PointNet网络基础上改进点云分类网络结构。通过添加局部特征提取模块与基于Transformer网络的非局部特征提取模块,并结合特征属性邻接图信息与原始点云数据,对24种常见特征进行特征识别试验,最终识别准确率为99.92 %。

关键词: 零件模型特征识别, 属性邻接图, 点云, Transformer网络, PointNet

Abstract: A part model feature recognition method combining attribute adjacency graph and point cloud was proposed by combining two feature recognition methods to overcome the limitations of current part model feature recognition technology based on attribute adjacency graph and point cloud.The model attribute adjacency graph was used to match feature subgraphs to find and separate feature surfaces,and then the feature surfaces in point clouds were sampled.The point cloud classification network structure on the basis of PointNet network was improved by adding a local feature extraction module and a Transformer based non-local feature extraction module and combining feature attribute adjacency graph information with original point cloud data.Experimental results indicate that the recognition accuracy for 24 common features is 99.92 %.

Key words: part model feature recognition, attribute adjacency graph, point cloud, Transformer net, PointNet

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: