[1] 张健,刘韦,宋丽.基于力传感器重力补偿的机器人主动柔顺插孔控制方法[J].制造业自动化,2022,44(3):197-200. [2] 刘许亮.智能制造机器人多手臂自适应协同控制方法研究 [J].制造业自动化,2022,44(1):110-113. [3] LIN Y,SUN Y.Task-based grasp quality measures for grasp synthesis[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).Hamburg:IEEE,2015:485-490. [4] LIN Y,SUN Y.Task-oriented grasp planning based on disturbance distribution[J].Springer,2016,114:577-592. [5] KOKIC M,STORK J A,HAUSTEIN J A,et al.Affordance detection for task-specific grasping using deep learning[C]//2017 IEEE-RAS 17th International Conference on Humanoid Robotics.Humanoids:IEEE,2017:91-98. [6] DETRY R,PAPON J,MATTHIES L.Task-oriented grasping with semantic and geometric scene understanding[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).Vancouver:IEEE,2017:3266-3273. [7] FANG K,ZHU Y,GARG A,et al.Learning task-oriented grasp for tool manipulation from simulated self-supervision[J].The International Journal of Robotics Research,2020,39(2/3):202-216. [8] BOHG J,MORALES A,ASFOUR A,et al.Date-driven grasp synthesis-a survey[J].IEEE Trans.Robot,2014,30(2):289-309. [9] VARLEY J,DECHANT C,RICHARDSON A,et al.Shape completion enabled robotic grasping[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).Humanoids:IEEE,2017:2442-2447. [10] GUO D,SUN F,LIU H,et al.A hybrid deep architecture for robotic grasp detection[C]//2017 IEEE International Conference on Robotics and Automation(ICRA).Singapore:IEEE,2017:1609-1614. [11] MAHLER J,LIANG J,NIYAZ S,et al.Dex-Net 2.0:Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics[J].RSS,2017,29(22):12-26. [12] LEVINE S,PASTOR P,KRIZHEVSKY J,et al.Learning hand-eye coordination for robotic grasping with deep learning and largescale data collection[J].The International Journal of Robotics Research,2018,37(4/5):421-436. [13] MILLER A T,KNOOP S,CHRISTENSEN H I,et al.Automatic grasp planning using shape primitives[C]//2003 IEEE International Conference on Robotics and Automation. Taipei:IEEE,2003:1824-1829. [14] MAHLER J,PATIL S,KEHOE B,et al.GP-GPIS-OPT:grasp planning with shape uncertainty using gaussian process implicit surfaces and sequential convex programming[C]//2015 IEEE International Conference on Robotics and Automation(ICRA).Stockholm:IEEE,2015:4919-4926. [15] GOLDFEDER C,ALLEN P K,LACKNER C,et al.Grasp planning via decomposition trees.[C]//2007 IEEE International Conference on Robotics and Automation.Torun:IEEE,2007:4679-4684. [16] SAXENA A,DRIEMEYER J,NG A Y.Robotic grasping of novel objects using vision[J].Int.J.Robot.Res,2008,27(2):157-173. [17] LE Q V,KAMM D,KARA A F,et al.Learning to grasp objects with multiple contact points[C]//2010 IEEE International Conference on Robotics and Automation.Anchorage:IEEE,2010:5062-5069. [18] JIANG Y,MOSESON S,SAXENA A.Efficient grasping from RGBD images:learning using a new rectangle representa-tion[C]//2011 IEEE International Conference on Robotics and Automation.Shanghai:IEEE,2011:3304-3311. [19] GUO D,SUN F,FANG B,et al.Robotic grasp using visual and tactile sensing[J].Information Sciences,2017,417:274-286. [20] ZHOU X,LAN X,ZHANG H,et al.Fully convolutional grasp detection network with oriented anchor box[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).Madrid:IEEE,2018:7223-7230. [21] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149. [22] ASIF U,TANG J,HARRER S.Densely Supervised Grasp Detector(DSGD)[C]//AAAI Conference on Artificial Intelligence.Hawaii:IEEE,2019:8085-8093. [23] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:770-778. [24] LIU Z,MAO H,WU C Y,et al.A ConvNet for the 2020s[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans:IEEE,2022:11976-11986. [25] YU W,LUO M,ZHOU P,et al.Metaformer is actually what you need for vision[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans:IEEE,2022:10819-10829. [26] DONG X,BAO J,CHEN D,et al.Cswin transformer:a general vision transformer backbone with cross-shaped windows[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans:IEEE,2022:12124-12134. [27] HE K,GKIOXARI G,DOLLÁR P,et al.Mask R-CNN[C]//IEEE International Conference on Computer Vision.Venice:IEEE,2017:2961-2969. [28] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//IEEE International Conference on Computer Vision.Venice:IEEE,2017:2980-2988. [29] TIAN Z,SHEN C,CHEN H,et al.Fcos:fully convolutional one-stage object detection[C]//IEEE/CVF International Conference on Computer Vision.Seoul:IEEE,2019:9627-9636. [30] TAN M,PANG R,LE Q V.Efficientdet:scalable and efficient object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Venice:IEEE,2020:10781-10790. [31] JIANG Y,MOSESON S,SAXENA A.Efficient grasping from RGBD images:Learning using a new rectangle representation[C]//IEEE International Conference on Robotics and Automation.Shanghai:IEEE,2011:3304-3311. [32] MORRISON D,CORKE P,LEITNER J.Learning robust,real-time,reactive robotic grasp[J].The International Journal of Robotics Research,2020,39(2/3):183-201. [33] DEPIERRE A,DELLANDREA E,CHEN L.Jacquard:a large scale dataset for robotic grasp detection[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Madrid:IEEE,2018:3511-3516. [34] JEFFREY M,KEN G.Learning deep policies for robot bin picking by simulating robust grasping sequences[C]//Conference on Robot Learning.California:PMLR,2017:515-524. [35] PAS T A,GUALTIERI M,SAENKO K,et al.Grasp pose detection in point clouds[J].The International Journal of Robotics Research,2017,36(13/14):1455-1473. [36] WU B,AKINOLA I,GUPTA A,et al.Generative Attention Learning:A “GenerAL” Framework for High-performance Multi-fingered Grasp in Clutter[J].Autonomous Robots,2020,44(6):971-990. |