现代制造工程 ›› 2025, Vol. 533 ›› Issue (2): 121-129.doi: 10.16731/j.cnki.1671-3133.2025.02.015

• 设备设计/ 诊断维修/ 再制造 • 上一篇    下一篇

改进北方苍鹰算法在立磨下摇臂结构优化的应用研究*

彭茂珲1,2, 邹帅1,2, 滕家皇1,2, 黄福川1,2   

  1. 1 广西大学机械工程学院,南宁 530004;
    2 广西石化资源加工及过程强化技术重点实验室,南宁 530004
  • 收稿日期:2024-08-06 发布日期:2025-02-27
  • 通讯作者: 黄福川,博士,教授,研究方向为非金属材料加工及相关设备的研发、摩擦学。E-mail:huangfuchuan@gxu.edu.cn
  • 作者简介:彭茂珲,硕士研究生,研究方向为机械设计制造及自动化。E-mail:2332080809@qq.com
  • 基金资助:
    *国家自然科学基金面上项目(52063003);广西科技重大专项项目(桂科AA19254010)

Application of improved northern goshawk optimization algorithm in structural optimization of the lower rocker arm ina vertical roller mill

PENG Maohui1,2, ZOU Shuai1,2, TENG Jiahuang1,2, HUANG Fuchuan1,2   

  1. 1 School of Mechanical Engineering,Guangxi University,Nanning 530004,China;
    2 Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology,Nanning 530004,China
  • Received:2024-08-06 Published:2025-02-27

摘要: 为提高立磨下摇臂结构优化的效率和精度,提出了一种基于改进北方苍鹰(INGO)算法和BP模型相结合的优化方法。首先,对下摇臂进行有限元分析;其次,针对北方苍鹰(NGO)算法易陷入局部极值和收敛速度慢的问题,利用拉丁超立方采样法、正弦余弦算法和柯西变异等策略改进NGO,接着构建INGO-BP预测模型,用于捕捉下摇臂不同结构参数与质量、最大等效应力和最大变形之间关系;最终,建立下摇臂的数学优化模型并求解得到一组最优设计变量。实验结果表明,优化后的下摇臂质量减轻了16.4 %,同时最大等效应力和最大变形仍在安全范围内。与其他算法相比,INGO算法具有快速收敛和强大的优化能力;而在预测下摇臂的力学性能方面,INGO-BP模型表现出极高的精度和稳定性,为优化算法在结构优化中的应用提供了参考。

关键词: 下摇臂, 改进北方苍鹰算法, BP神经网络, 结构优化

Abstract: To enhance the efficiency and accuracy of the lower rocker arm optimization in vertical roller mills,an advanced optimization approach based on the Improved Northern Goshawk Optimization (INGO) algorithm and the BP Neural Network (BPNN) model was proposed. Initially,a finite element analysis of the lower rocker arm was performed.Subsequently,to overcome the issues of local extrema and slow convergence with the Northern Goshawk Optimization (NGO) algorithm,improvements were introduced through the Latin hypercube sampling method,the sine cosine algorithm,and Cauchy mutation for NGO. Following this,INGO-BP prediction models were constructed to capture the relationships between different structural parameters and the mass,maximum equivalent stress,and maximum deformation of the lower rocker arm.Ultimately,a mathematical optimization model for the lower rocker arm was established and solved,yielding a set of optimal design variables. Experimental results revealed that the mass reduction in the optimized lower rocker arm reached 16.4 %,while the maximum equivalent stress and maximum deformation remained within safe limits.In comparison to other algorithms,the INGO has the advantages of fast convergence and strong optimization ability. The INGO-BP model demonstrated high accuracy and stability in predicting the mechanical properties of the lower rocker arm,providing reference for applying optimization algorithms in structural optimization.

Key words: lower rocker arm, Improved Northern Goshawk Optimization(INGO), BP neural network, structural optimization

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: