现代制造工程 ›› 2017, Vol. 440 ›› Issue (5): 44-48.doi: 10.16731/j.cnki.1671-3133.2017.05.009

• 机器人技术 • 上一篇    下一篇

移动机器人路径规划中的蚁群优化算法研究

左大利1, 聂清彬2, 3, 张莉萍4, 丁度坤1   

  1. 1 东莞职业技术学院机电工程系,东莞 523808;
    2 重庆邮电大学移通学院,重庆 401520;
    3四川大学锦江学院,成都 620860;4 重庆邮电大学软件工程学院,重庆 400065
  • 收稿日期:2016-02-03 出版日期:2017-05-20 发布日期:2018-01-08
  • 作者简介:左大利,硕士,讲师,研究方向为数控技术及其职业教育。聂清彬,硕士,讲师,研究方向为云计算与物联网。张莉萍,硕士,讲师,研究方向为软件工程。丁度坤,博士,副教授,研究方向为机器人技术、光机电一体化及高职教育。E-mail:2872706794@qq.com
  • 基金资助:
    东莞职业技术学院院级基金课题项目(2015c13);重庆市前沿与应用基础研究计划一般资助项目(cstc2014jcyjA40049)

Research of improved ant colony optimization in mobile robot path planning

Zuo Dali1, Nie Qingbin2,3, Zhang Liping4, Ding Dukun1   

  1. 1 Department of Mechanical and Electrical Engineering,Dongguan Vocational and Technical College,Dongguan 523808,Guangdong,China;
    2 College of Mobile Communication,Chongqing University of Posts and Telecommunications,Chongqing 401520,China;
    3 Jinjiang College,Sichuan University,Chengdu 620860,China;4 College of Software Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China
  • Received:2016-02-03 Online:2017-05-20 Published:2018-01-08

摘要: 针对将传统蚁群算法引入到移动机器人的路径规划当中会存在收敛速度慢、效率低下、容易陷入局部最优,甚至出现死锁等缺陷,提出一种改进的蚁群算法,以栅格法建立机器人工作环境,改进信息素的更新方式,设置信息素浓度的阀值,引入死锁处理策略,改进状态转移概率,增加解的多样性。在栅格环境下对移动机器人的路径规划进行仿真测试,仿真结果表明,改进的蚁群算法能缩小对最优路径的搜索范围,降低迭代次数,提高对最优解的搜索效率,能获得全局最优无碰撞的路径。

关键词: 路径规划, 移动机器人, 蚁群算法, 栅格法, 最优路径

Abstract: Aiming at solving defects such as slow convergence speed,low efficiency,frequent local optimum,and even the emergence of deadlock in the path planning of introducing the traditional ant colony algorithm into mobile robots,an advanced ant colony algorithm is proposed,which establishes the working environment of the robot by grid method,improves updating mode of information pheromone,sets the pheromone concentration threshold,introduces treatment strategy of deadlock,and thus improves the state transition probability and increases the diversity of solutions.Simulation tests for mobile robot path planning are carried out in the grid environment.The results of simulation tests show that the improved ant colony algorithm can narrow the search scope of the optimal path and reduce the number of iterations,improve the search efficiency of the optimal solution,and can obtain the global optimum collision-free path.

Key words: path planning, mobile robot, ant colony algorithm, grids, optimal path

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: