现代制造工程 ›› 2017, Vol. 438 ›› Issue (3): 24-30.doi: 10.16731/j.cnki.1671-3133.2017.03.005

• 实验研究 • 上一篇    下一篇

基于K-L散度与PSO-SVM的齿轮故障诊断

秦波, 刘永亮, 王建国, 杨云中   

  1. 内蒙古科技大学机械工程学院,包头 014010
  • 收稿日期:2015-06-12 出版日期:2017-03-18 发布日期:2018-01-08
  • 作者简介:秦波,讲师,工学硕士,主要研究方向为复杂工业过程建模、优化及故障诊断。
    刘永亮,通讯作者,硕士研究生,主要研究方向:机电系统智能诊断。
    王建国,博士,教授,博士研究生导师,主要研究方向:机电系统智能诊断与工业产品质量监控。
    E-mail:nkdqb@163.com;yongliangfly2013@sina.com
  • 基金资助:
    国家自然基金项目(21366017);内蒙古科技厅高新技术领域科技计划重大项目(20130302);内蒙古科技大学创新基金资助项目(2015QDL12)

The gear fault diagnosis based on K-L divergence and PSO-SVM

Qin Bo, Liu Yongliang, Wang Jianguo, Yang Yunzhong   

  1. Mechanical Engineering School,Inner Mongolia University of Science & Technology,Baotou 014010,Inner Mongolia,China
  • Received:2015-06-12 Online:2017-03-18 Published:2018-01-08

摘要: 针对表征齿轮故障信号特征难提取及支持向量机结构参数基于经验选取,致使故障状态识别精度差的问题,提出了一种基于K-L散度与PSO-SVM的齿轮故障诊断方法。首先,用经验模式分解(EMD)将齿轮振动信号筛分为多个本征模式分量(IMF);然后,选取包含有信号主要特征的IMF并求其与无故障原信号的K-L散度值;其次,利用粒子群算法(PSO)优化支持向量机(SVM)的惩罚系数和高斯核宽度系数两个结构参数,在此基础上建立齿轮故障分类模型;并利用实验齿轮数据验证方法的有效性,结果表明,与TF-SVM、TF-PSO-SVM、K-L-SVM方法相比,基于K-L散度与PSO-SVM的齿轮故障诊断方法具有更高的精度。

关键词: 经验模式分解, K-L散度, 粒子群算法, 支持向量机, 齿轮故障诊断

Abstract: For the problem that the characterization of the gear fault signal feature is difficult to extract and the structure parameters selection of Support Vector Machine (SVM) are based on experience leads the poor precision of fault state recognition,proposes a K-L divergence and PSO-SVM based method of gear fault diagnosis.First of all,the gear vibration signal is divided by EMD into several Intrinsic Mode Functions (IMF).Then,it selects IMF that contains main characteristics of signal and calculates their K-L divergence with the original signal value.Second,the Particle Swarm Optimization (PSO) was used to optimize the punish coefficient of Support Vector Machine (SVM) and the structural parameters of Gaussian kernel width coefficient.The gear fault classification model is built;The effectiveness of the method was validated by the experimental data of gear.The experimental result shows that compared with the TF-SVM,TF-PSO-SVM,gear fault diagnosis method based on K-L divergence and PSO-SVM has higher precision.

Key words: Empirical Mode Decomposition(EMD), K-L divergence, Particle Swarm Optimization(PSO), Support Vector Machine(SVM), gear fault diagnosis

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: