现代制造工程 ›› 2024, Vol. 528 ›› Issue (9): 144-151.doi: 10.16731/j.cnki.1671-3133.2024.09.019

• 设备设计/诊断维修/再制造 • 上一篇    下一篇

基于AFF-Stablenet模型的小样本轴承故障诊断*

郭康1,2, 王志刚1,2, 徐增丙1,2   

  1. 1 武汉科技大学机械自动化学院,武汉 430081;
    2 武汉科技大学冶金装备及其控制教育部重点实验室,武汉 430081
  • 收稿日期:2024-01-16 出版日期:2024-09-18 发布日期:2024-09-27
  • 通讯作者: 徐增丙,博士,硕士生导师,主要研究方向为机器视觉、故障诊断和模式识别。 E-mail:guokang_2024@163.com
  • 作者简介:郭康,硕士研究生,主要研究方向为故障诊断。
  • 基金资助:
    *国家自然科学基金项目(51775391)

Fault diagnosis of small sample bearings based on the AFF-Stablenet model

GUO Kang1,2, WANG Zhigang1,2, XU Zengbing1,2   

  1. 1 School of Mechanical Automation,Wuhan University of Science and Technology,Wuhan 430081,China;
    2 Key Laboratory of Metallurgical Equipment and Control,Ministry of Education, Wuhan University of Science and Technology,Wuhan 430081,China
  • Received:2024-01-16 Online:2024-09-18 Published:2024-09-27

摘要: 针对滚动轴承在小样本条件下诊断准确率低和泛化性弱的问题,提出了一种基于注意力特征融合的深度稳定学习(Attention Feature Fusion and Deep Stable Learning,AFF-Stablenet)模型的故障诊断方法。该方法首先使用经验模态分解(Empirical Mode Decompositim,EMD)将样本分解成多段频率的子信号,求取子信号与原始信号的互相关系数,选择系数较高的前三阶子信号;利用连续小波变换(Continuws Narelet Transorm,CWT)将子信号转换为时频图表示,通过注意力特征融合的方式将这些时频图特征进行融合;最后将融合特征输入到深度稳定学习(Stablenet)模型进行训练与预测。为验证模型的有效性,采用凯斯西储大学轴承数据集进行各组对比试验,都灵理工大学轴承数据集进行验证。实验结果表明,AFF-Stablenet模型在小样本情况下的泛化性和鲁棒性均强于其他对比模型,证明了模型的优越性。

关键词: 注意特征融合, 深度稳定学习, 滚动轴承, 小样本, 故障诊断

Abstract: A fault diagnosis method based on the AFF-Stablenet model is proposed to address the issues of low diagnostic accuracy and weak generalization of rolling bearings under small sample conditions.Initially,the samples are decomposed into sub-signals of multiple frequencies using EMD. The cross-correlation coefficients between the sub-signals and the original signal are computed. The top three sub-signals with higher coefficients are selected.These sub-signals are transformed into time-frequency representations using CWT. Through attention-based feature fusion,the time-frequency features are integrated.Finally,the fused features are input into the Stablenet model for training and prediction. To validate the effectiveness of the proposed model,comparative experiments are conducted using the Case Western Reserve University bearing dataset and verified using the Politecnico di Torino bearing dataset. Experimental results demonstrate that the AFF-Stablenet model exhibits superior generalization and robustness under small sample conditions compared to other models,affirming the superiority of the proposed approach.

Key words: pay attention to feature fusion, deep and stable learning, rolling bearing, small samples, fault diagnosis

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: