现代制造工程 ›› 2024, Vol. 520 ›› Issue (1): 137-141.doi: 10.16731/j.cnki.1671-3133.2024.01.020

• 设备设计/诊断维修/再制造 • 上一篇    下一篇

基于PSO-IBP神经网络的纯电动汽车电驱总成故障诊断*

肖伟1,2, 李泽军2, 管天福2, 贺路2, 陈绪兵1   

  1. 1 武汉工程大学机电工程学院,武汉 430205;
    2 湖北国土资源职业学院汽车与机电学院,武汉 430090
  • 收稿日期:2023-06-25 出版日期:2024-01-18 发布日期:2024-05-29
  • 通讯作者: 陈绪兵,教授,主要研究方向为智能制造。E-mail:bluegif@gmail.com
  • 作者简介:肖伟,博士研究生,主要研究方向为新能源汽车技术、智能故障诊断技术。李泽军,教授,主要研究方向为汽车检测与维修技术。管天福,副教授,主要研究方向为机电一体化、工业机器人。贺路,讲师,主要研究方向为机械工程。
  • 基金资助:
    *国家自然科学基金项目(51875415);中国电子劳动学会 “产教融合、校企合作”教育改革发展课题项目(Ciel2022139)

Fault diagnosis of electric drive assembly of electric vehicle based on PSO-IBP neural network

XIAO Wei1,2, LI Zejun2, GUAN Tianfu2, HE Lu2, CHEN Xubing1   

  1. 1 School of Mechanical & Electrical Engineering,Wuhan Institute of Technology,Wuhan 430205,China;
    2 College of Automobile and Electromechanical,Hubei Land Resources Vocational College, Wuhan 430090,China
  • Received:2023-06-25 Online:2024-01-18 Published:2024-05-29

摘要: 为了提高纯电动汽车电驱总成的故障诊断准确率,提出了一种基于粒子群优化(Particle Swarm Optimizing,PSO)算法的改进BP(Improved Back Propagation,IBP)神经网络(PSO-IBP)故障诊断方法。应用线性整流单元(Rectified Linear Unit,ReLU)作为BP神经网络的激活函数,通过粒子群优化算法对BP神经网络权值和阈值进行动态寻优,构建PSO-IBP模型。通过采集纯电动汽车电驱总成故障数据,分别对PSO-IBP神经网络模型、BP神经网络模型和概率神经网络(Probabilistic Neural Network,PNN)模型进行训练与仿真,结果表明,相比于BP神经网络方法及概率神经网络方法,基于PSO-IBP神经网络模型的纯电动汽车电驱总成故障诊断方法具有更高的准确率。

关键词: 纯电动汽车, 粒子群算法, BP神经网络, 故障诊断

Abstract: In order to improve the accuracy of fault diagnosis for the electric drive assembly of pure electric vehicles,a fault diagnosis method based on Particle Swarm Optimizing (PSO) algorithm was proposed to optimize the Improved Back Propagation (IBP) neural network.The Rectified Linear Unit (ReLU) was used as the activation function for the BP neural network.Through the Particle Swarm Optimizing algorithm,the weights and thresholds of the BP neural network were dynamically optimized to build the PSO-IBP model. By collecting fault data from the electric drive assembly of pure electric vehicles,PSO-IBP model,along with the BP neural network model and the Probabilistic Neural Network (PNN) model,were trained and simulated. The results showed that compared to the BP neural network methods and PNN methods,fault diagnosis method for pure electric vehicle electric drive assembly based on PSO-IBP neural network model has higher accuracy.

Key words: pure electric vehicle, Particle Swarm Optimizing algorithm, BP neural network, fault diagnosis

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: