[1] 门兰城,庞新宇,李峰,等.基于电机电流经验模态分解的行星轮故障诊断[J].机械设计与制造,2021(4):39-42,47. [2] RAJAGOPALAN S,HABETLER T G,HARLEY R G,et al. Current/voltage-based detection of faults in gears coupled to electric motors[J].IEEE Transactions on Industry Applications,2006,42:1412-1420. [3] 陈峙,王铁,谷丰收,等.基于电动机电流信号双谱分析的齿轮传动故障诊断[J].机械工程学报,2012,48(21):84-90. [4] 李峰,庞新宇,杨兆建.基于电机电流分析的齿轮断齿和磨损故障诊断[J].科学技术与工程,2018,18(10):48-52. [5] 管一臣,童攀,冯志鹏.基于ICEEMDAN方法和频率解调的行星齿轮箱故障电流信号特征分析[J].振动与冲击,2019,38(24):41-47. [6] 时献江,李苏健,郭华,等.行星齿轮箱的定子电流信号诊断方法试验研究[J].振动、测试与诊断,2022,42(4):671-676. [7] GAO A,FENG Z,LIANG M.Permanent magnet synchronous generator stator current AM-FM model and joint signature analysis for planetary gearbox fault diagnosis[J].Mechanical Systems and Signal Processing,2021,149(9):107331. [8] CUI W,MENG G,WANG A,et al.Application of rotating machinery fault diagnosis based on deep learning[J].Shock and Vibration,2021,2021:1-30. [9] GU J,WANG Z,KUEN J,et al.Recent advances in convolutional neural networks[J].Pattern Recognition,2018,77:354-377. [10] YANG Y,ZHENG H,LI Y,et al.A fault diagnosis scheme for rotating machinery using hierarchical symbolic analysis and convolutional neural network[J].ISA Transactions,2019,91:235-252. [11] JIA F,LEI Y,GUO L,et al.A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines[J].Neurocomputing,2018,272:619-628. [12] CHEN R X,HUANG X,YANG L X,et al.Intelligent fault diagnosis method of planetary gearboxes based on convolution neural network and discrete wavelet transform[J].Computers in Industry,2019,106:48-59. [13] DAYAN P,SAHANI M,DEBACK G.Unsupervised learning[J].The MIT Encyclopedia of the Cognitive Sciences,1999:857-859. [14] MONROY I,BENITEZ R,ESCUDERO G,et al.A semi-supervised approach to fault diagnosis for chemical processes[J].Computers & Chemical Engineering,2010,34(5):631-642. [15] LI C,LIANG M.Time-frequency signal analysis for gearbox fault diagnosis using a generalized synchrosqueezing transform[J].Mechanical Systems & Signal Processing,2012,26(1):205-217. [16] DRIF M,CARDOSO A J M. The use of the instantaneous-reactive-power signature analysis for rotor-cage-fault diagnostics in three-phase induction motors[J].IEEE Transactions on Industrial Electronics,2009,56(11):4606-4614. [17] WANG Z,OATES T. Imaging time-series to improve classification and imputation[J].arXiv preprint arXiv:1506.00327,2015. [18] YEUNG C K,YEUNG D Y. Addressing two problems in deep knowledge tracing via prediction-consistent regulariz-ation[C]//Proceedings of the Fifth Annual ACM Confer-ence on Learning at Scale. New York: Association for Computer Machinery,2018,5:1-10. [19] BORKAR T S,KARAM L J. DeepCorrect:correcting DNN models against image distortions[J].IEEE Transactions on Image Processing,2019,28(12):6022-6034. [20] SARWINDA D,PARADISA R H,BUSTAMAM A,et al. Deep learning in image classification using residual network (ResNet) variants for detection of colorectal cancer[J].Procedia Computer Science,2021,179:423-431. [21] SOHONI N S,ABERGER C R,LESZCZYNSKI M,et al. Low-memory neural network training:a technical report[J].arXiv preprint arXiv:1904.10631,2019. [22] SRIVASTAVA N,HINTON G,KRIZHEVSKY A,et al. Dropout:a simple way to prevent neural networks from overfitting[J].The Journal of Machine Learning Research,2014,15(1):1929-1958. [23] ZHAO P,PANG X,LI F,et al.Gearbox fault diagnosis method based on improved semi-supervised MTDL and GAF[J/OL].Measurement and Control(2024-02-29)[2024-04-26].DOI:10.1177/00202940241230488. |